Name

AP MULTIPLE CHOICE QUESTIONS **CH. 4, SET 1**

1984

- The net ionic equation for the reaction between silver carbonate and hydrochloric acid is 32.
 - A. $Ag_2CO_3(s) + 2H^+ + 2Cl^ 2AgCl(s) + H_2O + CO_2(g)$ B. $2Ag_2^+ + CO_3^{2^-} + 2H^+ + 2Cl^ 2AgCl(s) + H_2O + CO_2(g)$ C. $CO_3^{2^-} + 2H^+$ H₂O + CO₂ (g) D. Ag⁺ + Cl⁻ AgCl (s) $2Ag^{+} + H_2CO_3$ E. $Ag_2CO_3(s) + 2H^+$
- Which, if any, of the following species is in the greatest concentration in a 0.100 molar solution of H₂SO₄ in 53. water?
 - A. H_2SO_4 molecules
 - B. H_3O^+ ions
 - C. HSO₄⁻ ions
 - D. SO_4^{2-} ions
 - E. All species are in equilibrium and therefore have the same concentrations.
- 59. When 70. milliliters of 3.0 molar Na₂CO₃ is added to 30. milliliters of 1.0-molar NaHCO₃, the resulting concentration of Na⁺ is
 - A. 2.0 M C. 4.0 M E. 7.0 M B. 2.4 M D. 4.5 M
- The net ionic equation for the reaction that occurs during the titration of nitrous acid with sodium hydroxide is 64. A. $HNO_2 + Na^+ + OH^ NaNO_2 + H_2O$
 - B. $HNO_2 + NaOH$ $Na^+ + NO_2^- + H_2O$ C. $H^+ + OH^-$ H₂O D. $HNO_2 + H_2O$ $NO_2^- + H_3O^+$ E. $HNO_2 + OH^ NO_2^- + H_2O$
- A student wishes to prepare 2.00 liters of 0.100 molar KIO₃ (Molecular Weight 214). The proper procedure is **67**. to weigh out
 - A. 42.8 grams of KIO_3 and add 2.00 kilograms of H_2O_2 .
 - B. 42.8 grams of KIO₃ and add H₂O until the final homogeneous solution has a volume of 2.00 liters.
 - C. 21.4 grams of KIO₃ and add H₂O until the final homogeneous solution has a volume of 2.00 liters.
 - D. 42.8 grams of KIO_3 and add 2.00 liters of H_2O .
 - E. 21.4 grams of KIO₃ and add 2.00 liters of H_2O .

A 20.0-milliliter sample of 0.200-molar K₂CO₃ solution is added to 30.0 milliliters of 0.400-molar Ba(NO₃)₂ **68**. solution. Barium carbonate precipitates. The concentration of barium ion, Ba^{2+} , in solution after the reaction is E. 0.267 M

- A. 0.150 M C. 0.200 M
- B. 0.160 M D. 0.240 M